Wirkung von Partikeln auf den Menschen

Dr. Ursel Heudorf Abt. Medizinische Dienste und Hygiene Stadtgesundheitsamt Frankfurt

Fortbildungsveranstaltung der HLUG 04.11.04 Wiesbaden Staubimmissionen – Herkunft, Messung, Beurteilung, Wirkung

Gliederung

- Definitionen (Stäube)
- Auswirkungen auf die Gesundheit Erkenntnisquellen; methodische Möglichkeiten und Grenzen
- Toxikologische und experimentelle Daten
- Epidemiologische Daten
 - Kurzzeiteffekte
 - Wirkungen auf Atemwege und Herz/Kreislauf
 - Langzeiteffekte
 - Gesamtsterblichkeit,
 - Sterblichkeit Herzkreislauf-Erkrankungen
 - Sterblichkeit Lungenkrebs

Definitionen

- Schwebstaub (total suspended particulates, TSP): Partikel < ca. 30 µm</p>
- Thorakaler Schwebstaub (thoracic particulates): Partikel < 10 µm (PM10)</p>
- Alveolengängiger Schwebstaub (respirable particulates) auch Feinstaub: < 2,5 µm (PM 2,5)</p>
- Ultrafeine Partikel (UP): < 0,1 µm

Typische Konzentrationsbereiche von PM 10 und PM 2,5 (µg/m3) im Jahr 2001 an deutschen Messstationen (VDI-DIN, 2003)

	Ländlich	Städt. Hin- tergrund	Verkehrs- nah	Industriell beeinflußt
PM 10				
Jahresmittel	10-18	20-30	30-45	30-40
Anzahl Tagesmittel > 50 µg/m3	0-5	5-20	15-100	50-90
Spitzenwerte, Tagesmittel	50-70	60-100	70-150	100-200
PM 2,5				
Jahresmittel	10-15	15-20	25-30	15-25
Spitzenwerte, Tagesmittel	40-70	50-70	70-150	50-80
Verh. PM 2,5/PM 10 (Jahresmittel)	0,9	0,9	0,75-0,9	0,7-0,9

Methoden

- Tierversuch: klar definierte Stäube (Inhaltsstoffe, Konzentrationen), eindeutig festgelegten Umgebungsfaktoren, nur für definierte Kurzzeitbelastungen, Übertragbarkeit vom (kleinen) Versuchstier auf den Menschen ist nicht immer gegeben
- Klinische Studien: s.o., aber kein Problem der Übertragbarkeit Tier-Mensch; nur freiwillige, gesunde Erwachsene, ethische Probleme
- Epidemiologische Studien: kein Problem der Übertragbarkeit Tier-Mensch, "Realität" wird untersucht. Aber: Problem weiterer Einflußfaktoren, die schlecht "kontrolliert" oder ausgeschlossen werden können

Tierversuche – kardiovaskuläre Toxizität

- entzündungsähnliche Funktionsveränderungen am Herzen
- weiße Blutkörperchen und Blutplättchen verändert,
- und Fließeigenschaft (Viskosität) des Bluts verändert, dadurch
- Änderung der Blut(Mikro)Zirkulation
- Änderung des Herzrhythmus und des EKG (insbes. bei älteren und vorgeschädigten Labortieren)

Salvi et al., 1999; Seaton et al., 1999

Tierversuche – Respiratorische Toxizität

 Nach Inhalation erhöhte Granulozytenzahlen und erhöhter Proteingehalt in der Lunge (Lavage und Biopsie) als Zeichen einer Entzündung (Salvi et al., 1999)

Humandaten - kardiovaskuläre und respiratorische Toxizität

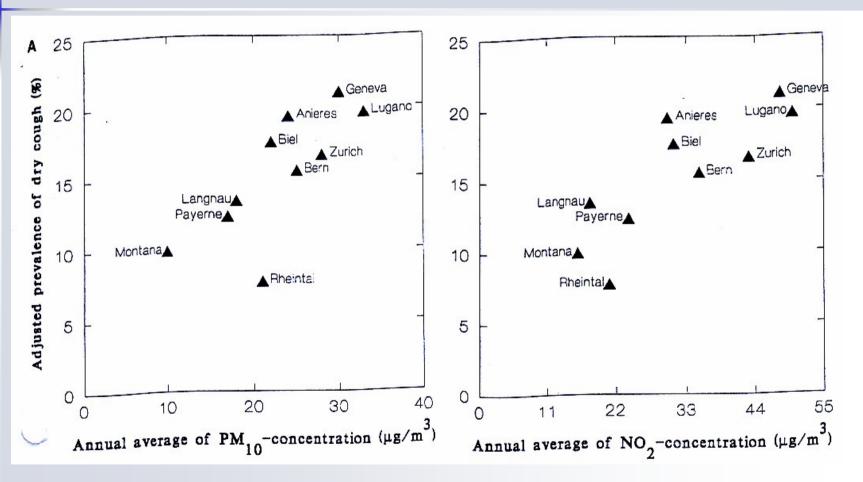
- Kardiovaskulär: Erhöhte Plasmaviskosität von Patienten während Smogepisode 1985 (Peters et al., 1997) - Übereinstimmung mit Tierversuchen
- Respiratorisch: in verschiedenen Studien vergleichbare Effekte auf Granulozyten und Proteingehalt in der Lunge nicht gefunden; keine eindeutige Wirkung auf die Lungenfunktion in klinischen Studien

Epidemiologische Daten

Kurzzeiteffekte - Wirkungen auf die Atemwege - Kinder

- 4470 Kinder (6-15 J), 10 Städte Schweiz
- Assoz. mit PM10, NO2, SO2
- Strengste Assoziationen zu PM10:

chronischer Husten 3,07 (1,6-5,8)


nächtlicher Husten 2,88 (1,7-4,9)

- Bronchitis 2,17 (1,2-4,9)

 Bewertung wegen hoher Korrelationen der Schadstoffe untereinander schwierig

Braun-Fahrländer et al., (1997)

Kurzzeiteffekte trockener Husten

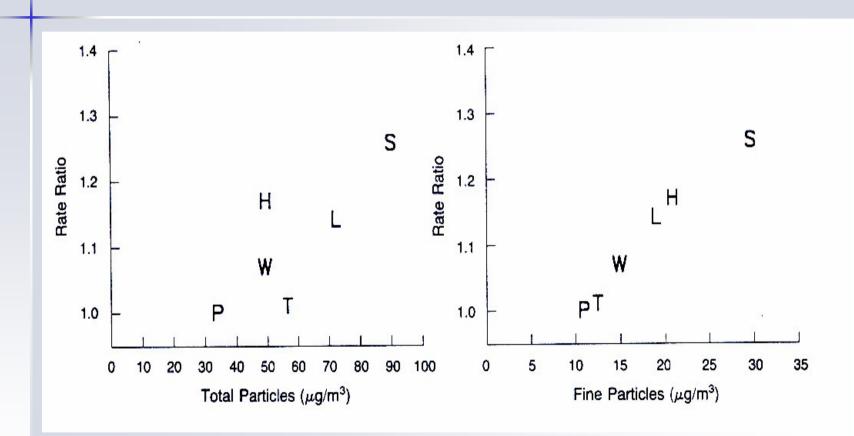
Braun-Fahrländer et al., (1997)

Kurzzeiteffekte – epidemiologische Studien (WHO, 1996)

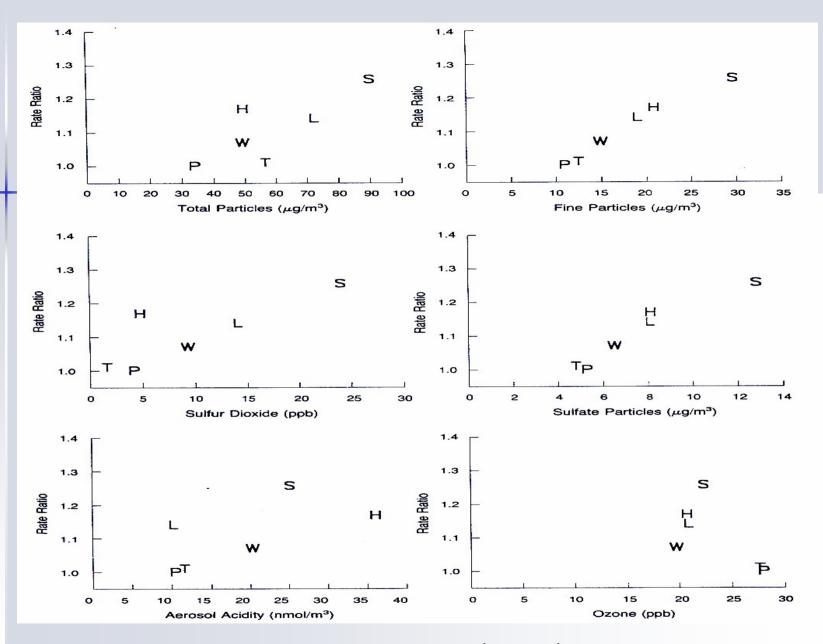
Gesundheitsindikator	RR	95CI	Anzahl Personen, die von einer 3-tägigen Episode betroffen wärer	
			50 μg/m3	100 μg/m3
Sterblichkeit	1,0070	1,0059-1,0082	3,5	7
Krankenhauseinweisungen (Atemwege)	1,0084	1,0050-1,0117	3	6
Medikamentengebrauch	1,0337	1,0205-1,0470	5100	10200
Husten	1,0455	1,0227-1,0687		
Symptome unt. Atemwege	1,0345	1,0184-1,0508	6000	12000

*Pro Million; PM 10

Kurzzeiteffekte – epidemiologische Studien (WHO, 1996)


10 μg PM 10 / m3

- Anstieg der Sterblichkeit um 0,7 %
- Anstieg der Krankenhauseinweisungen wegen Atemwegs- und/oder Herz-Kreislauf-Erkrankungen um 0,8 %
- Erhöhung des Medikamentenverbrauchs bei Asthmatikern um 3,4 %.


Langzeiteffekte von Partikeln auf die Gesundheit - Studien (VDI, 2003)

Studien	Teilnehmer	Zeit- raum
Havard Six Cities; Dockery et al., 1993	Ca. 8000 Erw.	14-16 J
American Cancer Society (ACS); Pope et al., 1995	Ca. 550 000 Erw. In 154 Städten	8 J
Neuere Analyse der ACS	Ca 1,5 Millionen	16 J
Adventist Health Study of Smog (AHSMOG); Abbey et al., 1999; McDonnell et al., 2000	6300 nichtrauchende Erw.	15 J
Veterans' Administration Cohort Mortalitätsstudie (VA); Lipfert et al., 2000a	Ca 70 000 Männer 51+-12 J; incl. leicht erhöhter Blutdruck;	
Niederländische Verkehrs- Kohortenstudie (NL) Hoeck et al., 2002	Zufalls-Teilstichprobe einer anderen Kohortenstudie 55-69 J;	8 J
Dublin Interventionsstudie (DI), Clancy et al., 2002	Einfluß des Verbots der Kohle- heizung auf Mortalität Anteil an Black smoke sank um 70 %;	

Langzeiteffekte - Sterblichkeit six cities

Dockery et al., NEJM (1993) 329: 1753-9

Dockery et al., NEJM (1993) 329: 1753-9

Langzeiteffekte - American Cancer Study Sterblichkeit /Feinstaub, resp. Sulfatstaub

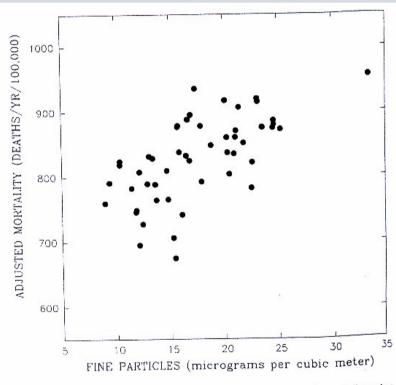


Figure 2. Age-, sex-, and race-adjusted population-based mortality rates for 1980 plotted against mean fine particulate air pollution levels for 1979 to 1983. Data from metropolitan areas that correspond approximately to areas used in prospective cohort analysis.

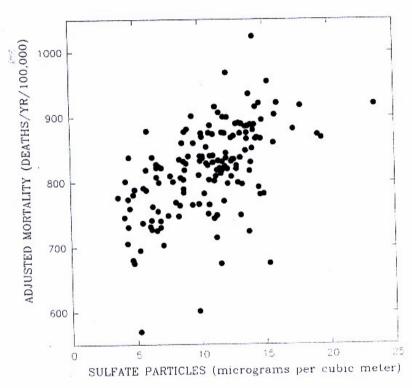


Figure 1. Age-, sex-, and race-adjusted population-based mortality rates for 1980 plotted against mean sulfate air pollution levels for 1980. Data from metropolitan areas that correspond approximately to areas used in prospective cohort analysis.

Langzeiteffekte Dublin - Interventionsstudie Luftbelastung und Todesfälle (alle/cardial)

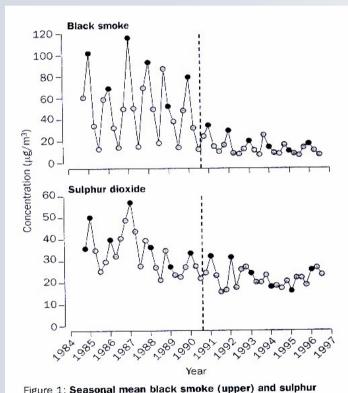
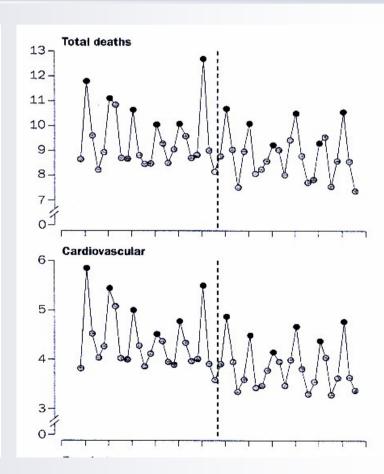
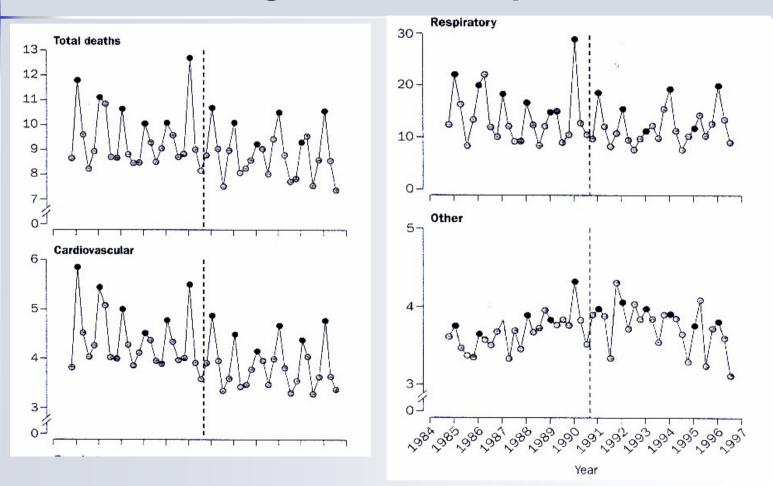




Figure 1: Seasonal mean black smoke (upper) and sulphur dioxide (lower) concentrations, September 1984–96 Vertical line shows date sale of coal was banned in Dublin County Borough. Black circles represent winter data.

Clancy et al., Lancet (2002) 360:1210-4

Langzeiteffekte Dublin - Interventionsstudie Todesfälle - gesamt und spez. Ursachen

Clancy et al., Lancet (2002) 360:1210-4

Langzeiteffekte von Partikeln auf die Gesundheit - Studienergebnisse

(VDI, 2003)

Studie	PM	Gesamt- Mortalität	Herz- Kreislauf- Mortalität	Lungen- krebs- Mortalität
Six City	PM 2,5	13 %	18 %	18 %
Six City (neu)	PM 2,5	14 %	19 %	21 %
ACS (American	PM 2,5	6,6 %	11,6 %	1,2 %
Cancer Soc)				
ACS neu	PM 2,5	7 %	12 %	0,8 %
ACS erweitert	PM 2,5	6,2 %	9,3 %	13,5 %
AHSMOG	PM 10/15	2 %	1 %	174 %*
AHSMOG	PM 2,5	9,3 %	20 %*	36 %
VA (Veterans)	PM 2,5	-10 %		

Risikoschätzer und Quantifizierung der gesundheitlichen Auswirkungen durch die PM10-Belastung (+ 10 µg/m3) in der Dreiländerstudie - Beispiel Frankreich

Gesundheitsmess- größe	Population	Relatives Risiko		Zusätzliche Fälle resp. Tage /1 Mill.	
		RR	95 CI	Anzahl	95 CI
Gesamtsterblichkeit	Erw. > 30 J	1,043	1,026-1,061	340	210-480
Respirator. Hospitalisierung	Erw. > 30 J	1,031	1,001-1,025	150	20-280
Kardiovaskul. Hospitalisierung	Erw. > 30 J	1,013	1,007-1,019	210	110-320
Chron. Bronchitis	Erw. > 25 J	1,098	1,009-1,194	390	40-780
Bronchitis	Ki < 15 J	1,306	1,135-1,502	4.830	2.130-8.730
Tage eingeschränkter Aktivität	Erw. > 20 J	1,094	1,079-1,109	263.700	222.000-306.000
Asthmaattacken*	Ki < 15 J	1,044	1,027-1,062	2.600	1.600-3.620
Asthmaattacken*	Pers. > 15 J	1,039	1,019-1,059	6.190	3.020-9.430

^{*} Personentage /Jahr

Adjustiertes RR für die Sterblichkeit bezogen auf + 10 µg/m3 PM 2,5 (WHO)

Todesursache	1979-2000		
	RR 95CI		
Alle	1,06	1,02-1,11	
Herz-Kreislauf	1,09	1,03-1,16	
Lungenkrebs	1,14	1,04-1,23	

Adj. für: Alter, Geschlecht, Rasse, Rauchen, Ausbildung, berufl. Belastung, Ernährung

Langzeiteffekte – epidemiologische Studien (WHO, 1996)

$10 \mu g PM10 / m3$:

- Anstieg der Sterblichkeit insgesamt um 6 %
- Anstieg der Sterblichkeit an Herz-Kreislauf-Erkrankungen um 9 %
- Anstieg der Sterblichkeit an Lungenkrebs um 14 %.

Vergleich von Sterblichkeitsrisiken in Deutschland

Sterblichkeit	Anzahl / 10.000 Einwohner / Jahr
Verkehrsunfälle (BRD, 2001)	0,84
Verkehrsunfälle (NRW, 2001)	0,58
Verkehrslärm > 65 dB	2,9
PM 10-Belastung	4
(+ 10 μg/m3)	

Schlußfolgerungen der VDI-DIN-Arbeitsgruppe (2003)

- "Aus den epidemiologischen Studien läßt sich kein Wirkungsschwellenwert ableiten"
- "..Ergebnis, dass eine weitere Absenkung der Grenzwerte zu einer relevanten Minderung des gesundheitlichen Risikos führt."
- "wegen der an den meisten Standorten engen Korrelationen zwischen PM10 und PM 2,5 ... Keine Notwendigkeit spezielle PM2,5-Grenzwerte zu erlassen"

Umweltmedizinische Bewertung des Einsatzes von Partikelfiltern bei Dieselfahrzeugen

Positive gesundheitliche Auswirkungen des Einsatzes von Partikelfiltern bei Dieselfahrzeugen - Risikoabschätzung für die Mortalität in Deutschland

Wichmann H-E, Umweltmedizin in Forschung und Praxis (2004) 9: 85-99

Geschätzte Anteile der Kfz-Abgasimmissionen an der mittleren jährlichen Konzentration PM 10 im Jahre 1997

PM 10	Länd- lich	Stadt. Hin- tergrund	Verkehrs- nah
Gesamt µg/m3	20	30	50
KfZ-Abgas µg/m3	2,3	4	12
Anteil KfZ-Abgas (%)	11%	18 %	28 %

Lambrecht et al., 1999

Geschätzte Minderung von Todesfällen in Deutschland durch Einsatz des Diesel-Partikel-Filters (- 3 µg PM10/m3)

	Erhobene Daten		Annahmen		
Todes-	Zusatzrisiko			Verringerung	
ursachen	Pro 10 μg/m3	BRD, 2001	3μg/m3 – RR-	der Sterbe-	
			Reduktion	fälle pro Jahr	
Alle	6 %	800 000	1,8 %	14 400	
Herz-Kreislauf	9 %	460 000	2,7 %	12 420	
Lungenkrebs	14 %	40 000	4,2 %	1 680	

Vermeidungspotenzial durch Einsatz des Dieselfilters mit angenommener Reduktion der PM 2,5-Konzentration um 3 µg/m3 - BRD

Vermeidungspotenzial	Standard	Alternativen
Sterblichkeit		
Gesamtsterblichkeit %	1,8 %	1,2-2,4%
Gesamtsterblichkeit n	14 400	9 600-19 200
Herz-Kreislauf-Mortalität %	2,7 %	1,8-3,6 %
Herz-Kreislauf-Mortalität n	12 420	8 280-16 560
Lungenkrebs-Mortalität %	4,2 %	2,8-5,6 %
Lungenkrebs-Mortalität n	1680	1120-2240
Verlängerung der		
Lebenserwartung		
Jahre	0,16	0,11-0,22
Monate	1,9	1,3-2,6

Wichmann, UFP, 2004

Schlußfolgerung

- Partikel sind ein relevanter Umweltfaktor, der in den derzeitigen Belastungssituationen messbare und erhebliche gesundheitliche Belastungen bis hin zu einer deutlichen erhöhten Sterblichkeit führt
- Eine Verminderung der Belastung ist aus umweltmedizinischer Sicht vordringlich
- Diese wird angesichts der großen Auswirkungen auf die Gesundheit zu einer messbaren und relevanten Minderung des gesundheitlichen Risikos für die Bevölkerung führen - zu einer deutlichen Verminderung von Erkrankungen aber auch einer Reduktion von vorzeitigen Todesfällen.